
July 1999 CROSSTALK The Journal of Defense Software Engineering 27

Confusing Process and Product: Why the Quality is not
There Yet

David A. Cook
Software Technology Support Center

For years now, the Department of Defense (DoD) and commercial software devel-
opment organizations have embraced the Software Engineering Institute (SEI)
Capability Maturity Model (CMM). In addition, there are many organizations
that are rushing to meet the requirements of International Organizations for
Standardization (ISO) 9000 and 9001. Unfortunately, organizations that meet
CMM or ISO requirements are not necessarily producing quality software. This
article discusses some impediments to software quality that remain in spite of CMM
or ISO certification.

Quality Defined

Quality is a difficult thing to formally define. If you consider
the strict definition, ISO 9001 suggests that it is “meeting
requirements1.” This is important, but not sufficient. In my
experience, software that meets requirements is inadequate.
Most software developers will quickly point out that many
requirements are implied or implicit, often unstated, and fre-
quently not addressed until implementation occurs. In addition,
most end-users are concerned with reliability and robustness.
Reliable software does what it is supposed to do, and does not
do things it is not supposed to do. Robust software not only is
reliable but also works dependably when confronted with unex-
pected or unanticipated conditions. Because software systems
today are so large and complex, and are often expected to work
under severe conditions where failure could mean loss of human
life, these systems need to be robust.

The CMM and ISO
Regardless of how you feel about quality, reliability, or robust-
ness as criteria, we all agree that most, if not all, software needs
to have improved quality. Before we can improve the quality,
however, we need to determine how the software is built. And
for that, we need to define how we built the software. One of
the best efforts in recent years to improve how we engineer soft-
ware has been the SEI CMM [1]. The CMM still is not univer-
sally respected by all practitioners but it unquestionably alerts
an organization to the practices that must exist for good, reliable
software engineering to be performed.

Many DoD organizations have achieved CMM Level 3 (the
“defined” level). The definition of this level is that the software
processes for both management and engineering activities is
documented, standardized, and integrated into a standard soft-
ware process for the organization. In effect, Level 3 of the
CMM removes the “superprogrammer” as the main reason for a
company achieving good software. Watts Humphrey said,
“There is a common view that a few first-class artists can do far
better work than the typical software team. … If this were true,
one would expect that those organizations that have the best
people would not suffer from the common problems of software
quality. … Experience, however, shows that this is not the case”

[2]. CMM Level 3 requires an organizational process that tries
to overcome the “superprogrammer” mindset and focuses on
sound software engineering principles for all developers.

Note, however, that organizational processes are usually
insufficient for truly great software — software is still developed
by individuals. Personal processes are still necessary — which is
why several organizations have experienced great success in
improving quality by using the Personal Software Process (PSP).
PSP requires the equivalent of CMM for individual program-
mers — a process that addresses quality on an individual, not
organizational, level [3]. PSP, when used in conjunction with
the CMM, provides personal processes that complement the
organizational processes, providing a better chance of quality.
As another weapon in the fight against poor quality, some
organizations look to ISO 9001. After all, it’s very title implies
that following it will produce a quality system. Unfortunately,
most people confuse a quality system — which is what ISO
9001 is concerned with — a quality product. Quality systems
are necessary to ensure the development of a quality product
but they are not sufficient [4]. To make matters worse, ISO
9001 is not even sufficient for a complete quality system.

W. F. Fightmaster, vice president of quality for Square D
(part of France’s Groupe Schneider) said, “There are some peo-
ple who believe that once you have ISO you have a quality sys-
tem. That just isn’t so. It is less than one-seventh of the system
[5].” Still, it is a fact that a quality system is required if you
want the end product to have quality. In mathematical terms, a
quality system is necessary but not sufficient for a quality prod-
uct. One customer warned me to be wary of ISO 9001 — that
it was possible to design a quality system that produced concrete
life jackets.

Why We Do Not Have Quality Yet
The point of this article is that we have tools that work. The
CMM improves the organizational process, PSP improves the
individual process, and ISO 9001 provides a quality system.
The question remains: Why are we not seeing great increases in
quality?

Based on several experiences, I can now point out three
problem areas where most organizations fail. In my opinion, all

28 CROSSTALK The Journal of Defense Software Engineering July 1999

three “truths” are obvious. Perhaps that is why I need to state
them, because obvious truths are sometimes the hardest to see
and understand.

• We are not using common sense.
• We have one process we publicize and another process we use.
• Good practices cannot overcome really poor management.

Tailor the Process to Your Needs
Truth No. 1: We are not using common sense. The Capability
Maturity Model is a process, not a product. Achieving CMM
Level 3 is not the end, quality software is the end. I recently
worked with an organization that wanted to organize their soft-
ware engineering process group (SEPG) to help it achieve and
coordinate development of its software process. It located
another organization that had recently organized their own
SEPG and copied the documentation almost directly. One
problem — the organization they borrowed from had nearly
300 developers, plus several levels of management, while its own
organization consisted of 17 people. Imagine, a 17-person shop
following guidelines set up for a 300-person organization. A
skimming of their SEPG documentation convinced me that it
would have to spend more than 50 percent of their work time
in SEPG-related meetings. Yet, the organization managed to
achieve their CMM Level 3 — in spite of the fact that they
could not produce software within their own process.

The point is not that common sense does not exist, it is
that we forget the difference between the product (quality soft-
ware) and the process (following the CMM). The CMM should
be a “living process,” in that frequent reviews lead an organiza-
tion to self-improvement. This is the purpose and intent of the
CMM, yet most organizations I have worked with treat the
CMM-related documentation as a standard. Many of the indi-
vidual developers treat the CMM with the same loathing that
we used to regard Military Standard 2167A. MilStd2167A now
is regarded for its perceived imposition of the waterfall develop-
ment model, inflexibility related to object-oriented design,
excessive documentation, no guidance on management indica-
tors, and the need to incorporate new development techniques
such as reuse and re-engineering [6]. Yet, some organizations
have set into place processes that are equally inflexible in similar
ways. We cannot afford to put processes in place that do not
work.

As a further comment on the lack of common sense, a
recent SEI monograph [7] discussed some problems with a gov-
ernment project. Integrated process teams were not integrated
— there was a “government” side and a “contractor” side. This
monograph is well-worth reading — it points out where com-
mon sense was lacking.

Use a Process that Works for You
Truth No. 2: We have one process we publicize and another
process we use. It is my firm belief that most organizations I
have worked with produce good software because most of the
low-level developers have internalized the work-arounds in the

system. The process does not work and is not modified. Yet, the
developers have found ways to make the system work in spite of
the documentation and process. This is a yardstick that I use
when I consult with an organization: If the developers are not
really following the process, then the process does not work.
This is not saying that developers will automatically follow a
good process; I think that good software developers have some
type of genetic defect that makes them want to buck the system
most of the time. But software developers can innately tell when
the process will or will not work, and will follow a process once
they are convinced that it is beneficial to them. One organiza-
tion I worked with had developers that fought an organized
review process. They fought until they saw the benefits in terms
of rework and maintenance. If all developers are ignoring a
process, then the “public process” is for show and the “hidden
process” is the one that works.

Management Needs Common Sense, too
Truth No. 3: Good practices cannot overcome really poor man-
agement. When I was little, my heroes were Superman and
Batman. Now, my hero is Dilbert (actually his creator, Scott
Adams). His “Pointy-Haired Boss” [8] seems to typify what is
wrong with software engineering. Every software development
organization I visit has Dilbert cartoons posted. Why? Because
the problems seem to hit home. Gerald Weinberg, in his book,
The Psychology of Computer Programming [9] says, “bad supervi-
sion and leadership is more common than we would like to
imagine.” A recent customer I worked with had totally separat-
ed the developers from the analysts, and the analysts from the
functional domain experts. The reason, supposedly, was to
“improve communication by providing single-point interfaces.”
The real reason, of course, was a turf battle. This turf battle,
where several managers were unable to allow free communica-
tion between co-workers under their control, resulted in soft-
ware that could neither be verified nor validated. Managers need
training in current practices and techniques, and they need to
have a buy-in for the ISO and CMM. If management does not
understand what is expected, they cannot be blamed for not fol-
lowing the process. Here is a sad fact — managers who have not
really changed their processes since the ’60s (and still think that
the “waterfall model” is just a new-fangled, passing fancy) will
never be able to creatively lead a team that produces quality
software.

Often, the case is not even that managers are old-fashioned.
Frequently they know nothing. With great regularity, we still
have cases where medium- to large-scale software acquisition
occurs by managers who do not understand the basic funda-
mentals about requirements and contracting. Asking “What are
my requirements?” after half a million dollars has been spent on
unusable software might stimulate the national economy, but
only causes frustration on the part of the poor users trying to
use a system that does not meet any of their needs. In short,
developing and procuring software requires the expertise of peo-
ple who have training and experience in software development
and acquisition. Managers who ignore this advice and attempt
to do it on their own end up with useless systems. Frederick

Software Engineering Technology

Brooks must have had these managers in mind when he made
the observation, “Plan to throw one away: you will, anyway
[10].” Alan Davis says that good management stifles motivation
and erases good work they have accomplished [11].

Summary

So what is the result? Throw CMM and ISO to the winds? No.
Proponents of CMM and ISO need to dig in harder. ISO 9001
and the CMM might not be the ultimate tools but they are the
best tools we have. What is needed is a healthy dose of common
sense. Quality software requires a process, and the process must
be different for each particular organization. In addition, the
process must be self-modifying and dynamic, again to meet the
specific needs of each product and organization. Remember that
quality software is the end, and that the process is the means. If
we keep our eyes on the target and modify the process to allow
us to reach it, quality software can be produced.

About the Author
David Cook is a principal member of the
technical staff, Charles Stark Draper
Laboratory, under contract to the STSC. He
has more than 25 years experience in soft-
ware development and has lectured and pub-
lished articles on software engineering,
requirements engineering, Ada, and simula-
tion. He has been an associate professor of

computer science at the U.S. Air Force Academy, deputy depart-
ment head of the software engineering department at the Air
Force Institute of Technology, and chairman of the Ada
Software Engineering Education and Training Team. He has a
doctorate degree in computer science from Texas A&M
University and is an SEI-authorized PSP instructor.

Software Technology Support Center
7278 Fourth Street
Hill AFB, Utah 84056
Voice: 801-775-3055

Fax: 801-777-8069
E-mail: cookd@software.hill.af.mil

References

1. Paulk, M. et. al. “Capability Maturity Model for
Software,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa. 1993.

2. Humphrey, W., Managing the Software Process, Addison
Wesley, 1990.

3. Humphrey, W., A Discipline for Software Engineering,
Addison Wesley, 1995.

4. Radice, R. “ISO 9001 Interpreted for Software
Organizations,” Paradoxicon Publishing, 1995.

5. Henkoff, R., “The Hot New Seal of Quality,” Fortune
magazine, June 28, 1993, pp. 116-120.

6. Newbery, G. “Changes from DOD-STD-2167A to MIL-
STD-498,” CROSSTALK The Journal of Defense Software
Engineering, April 1995.

7. Carney, D. “Case Study: Signigicant Schedule Delays in a
Complex NDI-Based System,” SEI Monographs on the Use
of Commercial Software in Government Systems, Software
Engineering Institute, Carnegie Mellon, Pittsburgh, Pa.
1998.

8. Adams, S. Seven Years of Highly-Defective People, Andrews
McMeel Publishing, 1997.

9. Weinberg, G., The Psychology of Computer Programming,
Silver Anniversary Edition, Dorset House, 1998.

10. Brooks, Frederick P. Jr., The Mythical Man-Month,
Addison Wesley, 1995.

11. Davis, Alan M., 201 Principles of Software Development,
McGraw-Hill, 1995.

Note

1. ISO 9001, Quality system — Model for quality assurance
in design, development, production, installation, and
servicing.

July 1999 CROSSTALK The Journal of Defense Software Engineering 29

Confusing Process and Product:Why the Quality is not There Yet

